Научный журнал
Научное обозрение. Педагогические науки
ISSN 2500-3402
ПИ №ФС77-57475

ПОЛИМЕРАЗНАЯ ЦЕПНАЯ РЕАКЦИЯ КАК МЕТОД ИССЛЕДОВАНИЯ В МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКОЙ ДИАГНОСТИКЕ

Колотова А.А. 1 Васильева О.Ю. 1 Горошко П.В. 1
1 ФГБОУ ВО «Волгоградский государственный медицинский университет» Министерства здравоохранения РФ
Бурное развитие молекулярно-генетической диагностики в течение последних десятилетий требует совершенствования имеющихся методов и разработки новых. Современная медицина использует достижения естественных наук, успешно применяя новые технологии диагностики заболеваний. Наряду с традиционными методами молекулярно-генетической диагностики, такими как кариотипирование, секвенирование, метод флуоресцентной диагностики и др., немаловажное место занимает метод полимеразной цепной реакции (ПЦР), основанный на увеличении количества копий определенного фрагмента ДНК.Метод полимеразной цепной реакции, изобретенный во второй половине XX века, по сей день являетсяпопулярным и фундаментальным, т.к. отличается высокой точностью и чувствительностью, а также скоростью проведения, что является несомненным плюсом и основанием для повсеместного использования данного метода.Данная технология считается одной из самых передовых в области диагностики различных инфекций и заболеваний. Разработанный не так давно, метод ПЦР постоянно совершенствуется и обсуждается на страницах медицинских журналов. В статье приведены исторические предпосылки разработки метода ПЦР, методика проведения реакции, описаны ее различные способы проведения. Сделан вывод об актуальности данного метода, описаны примеры областей его использования.
ПЦР
полимеразная цепная реакция
молекулярно-генетическая диагностика
1. Зорина В.В. Основы полимеразной цепной реакции. – М.: ДНК-технология, 2012. – 80 с.
2. Shehnam Shafique. Polymerase Chain Reaction. – N.Y.: LAP Lambert Academic Publishing. 2012. – P. 96.
3. Организация работы при исследованиях методом ПЦР материала, инфицированного патогенными биологическими агентами III—IV групп патогенности: Методические указания. – М.: Федеральный центр госсанэпиднадзора Минздрава России, 2004. – 19 с.
4. Организация работы лабораторий, использующих методы амплификации нуклеиновых кислот при работе с материалом, содержащим микроорганизмы I – IV групп патогенности: Методические указания. – М.: Государственная система санитарно-эпидемиологического нормирования Российской Федерации, 2009.- 31 с.
5. Молекулярная клиническая диагностика. Методы / пер. с англ.; под ред. С. Херрингтона, Дж. Макги. – М.: Мир, 1999. – 558 с.

Полимеразная цепная реакция (ПЦР) – экспериментальный метод молекулярной биологии, позволяющий добиться значительного увеличения малых концентраций определённых фрагментов нуклеиновой кислоты (ДНК/РНК) в биологическом материале (пробе).

Многочисленные открытия в области молекулярной биологии и генетики способствовали открытию ПЦР.В 1869 г. И. Мишер выделил вещество из клеток гноя, которое содержало азот и фосфор. Изначально вещество назвали нуклеином, а когда были определены его кислотные свойства нуклеиновой кислотой.В 1944 г. были проведены эксперименты по трансформации бактерий учеными О. Эвери, К. Маклауда и М. Маккарти. В ходе этих экспериментов было доказано, что за трансформацией бактерий (приобретением болезнетворных свойств безвредной культурой в результате добавления в неё убитых кипячением болезнетворных бактерий) стоит выделенная из пневмококков ДНК.В 1952 г. учеными А. Херши и М. Чейзом был проведен эксперимент с помеченными радиоактивными изотопами ДНК и белками. В результате они выяснили, что в зараженную клетку передается только нуклеиновая кислота, а не белок, как считалось ранее.В 1949–1951 гг. были сформулированы «правила Чаргаффа». Группа биохимика Э. Чаргаффа установила количественное соотношение между различными типами азотистых оснований в составе нуклеотидов ДНК.

Правила Чаргаффа и данные рентгеноструктурного анализа Розалинд Франклин сыграли решающую роль в расшифровке структуры ДНК. На основе этих данных в 1953 году Дж. Уотсоном и Ф. Криком был установлен принцип комплементарности. Ученые сделали вывод о том, что ДНК представляет собой двойную полипептидную цепь, образующую спираль благодаря водородным связям между азотистыми основаниями (аденин-тимин и гуанин-цитозин).В 1955 г. произошло открытие фермента ДНК-полимераза А. Корнбергом. Этот фермент способен удлинять полипептидную цепь присоединяя к 3’-концу цепи ДНК дополнительный нуклеотид. Для этого необходимо, чтобы праймер связался с цепью ДНК (матрицей) по принципу комплементарности. Чтобы реакция прошла раствор должен содержать нуклеозидтрифосфаты (дНТФ), которые используются в качестве «строительного материала». В 1971 г. Клеппе с соавторами определили состав реакционной смеси, и принципы использования ДНК-праймеров для получения новых копий ДНК. Однако, из-за технологической сложности искусственного синтеза праймеров и нестабильности реакции, метод ПЦР было невозможно использовать на практике в полной мере.В 1975 г. Т. Брок и Х. Фриз открыли Thermusaquaticus (грамотрицательную палочковидную экстремально термофильную бактерию). А в 1976 г. была выделена Taq-полимераза – фермент, который способен работать при повышенных температурах (оптимум 72–80°C).В 1983–1984 гг. К. Мюллисом был проведен ряд экспериментов по разработке ПЦР. Ученый первый начал использовать вместо ДНК-полимеразы устойчивую к высоким температурам Taq-полимеразу, что позволило ускорить работу по разработке полимеразной цепной реакции. Кроме того, К. Мюллисом в соавторстве с Ф. Фалуном был разработан алгоритм циклических изменений температуры в ходе ПЦР.

Открытие метода ПЦР стало одним из наиболее выдающихся событий в области молекулярной биологии за последние десятилетия. Метод продолжает развиваться, появляются новые модификации, но мы предлагаем рассмотреть методику проведения классической ПЦР.

Методика полимеразной цепной реакции

Метод постановки ПЦР требует наличия в реакционной смеси ряда основных компонентов: праймеры, Taq-полимераза, смесь дезоксинуклеотидтрифосфатов, буфер, анализируемый образец.

Праймеры – искусственно синтезируемые олигонуклеотиды, как правило, размером от 15 до 30 нуклеотидов, которые идентичны соответствующим участкам ДНК-мишени. Играют ключевую роль в амплификации, образуя продукты реакции.

Для полимеразной цепной реакции последовательности праймеров очень важны, потому что реакционный цикл имеет определенные величины температур, используемые на этапах нагрева и охлаждения.

Кроме того, большой избыток праймеров в реакционной смеси ПЦР приводит к тому, что они с большей вероятностью сталкиваются с частично комплементарным праймером, чем с полностью комплементарной ДНК матрицой. Таким образом, следует избегать комплементарностипраймеров друг другу.

Taq-полимераза – термостабильный фермент, который обеспечивает достраивание З’-конца второй цепи ДНК по принцип комплементарности. Этот фермент довольно часто используется при проведении стандартной ПЦР.

Taq ДНК полимераза имеет оптимальную температуру репликации – 75–80°C и выдерживает длительное воздействие температур до 96°C. Таким образом, она может оставаться активной после каждого из шагов денатурации.

Смесь дезоксинуклеотидтрифосфатов (дНТФ) – «строительный материал», который используется Taq-полимеразой для синтеза второй цепи ДНК. Включает в себя дезоксиаденозинтрифосфат (дАТФ), дезоксигуанозинтрифосфат (дГТФ), дезоксицитозинтрифосфат (дЦТФ) и дезокситимидинтрифосфат (дТТФ).

Для оптимального включения оснований в синтезируемую цепь ДНК их обычно добавляют к реакционной смеси ПЦР в эквимолярных количествах. Как правило, конечная концентрация каждого дезоксинуклеозидтрифосфата составляет 0,2 мМ.

Буфер – смесь катионов и анионов используемая в определенной концентрации, обеспечивающая оптимальные условия для реакции, а также стабильное значение рН. Значение рН буфера колеблется от 8,0 до 9,5 и стабилизируется Трис-HCl.

Одним из компонентов буфера Taq-полимеразы является ион калия (KCl), который способствует отжигу праймеров. Буферная концентрация ионов магния является еще одним важным фактором для правильного функционирования ДНК-полимеразы. Ионы магния служат кофактором для ДНК полимеразы.

Анализируемый образец – вносимый в реакционную смесь препарат, обычно содержащий искомую ДНК, служащую мишенью для амплификации. В случае отсутствия ДНК-мишени продукт не образуется.

Иногда для удобства детекции или контроля эффективности в состав реакционной смеси могут быть внесены дополнительные компоненты.

Внутренние контроли – несвойственный данному организму фрагмент ДНК, как правило, большего размера, ограниченный специфическими праймерами. Практически представляет собой альтернативную матрицу ПЦР и позволяет контролировать эффективность амплификации в каждой конкретной пробирке.

ДНК-зонды – искусственно синтезированные олигонуклеотиды небольшого размера (около 30 нуклеотидов), комплементарные специфическим ампликонам (продуктам реакции). Могут использоваться для детекции продуктов ПЦР, благодаря прикрепленным к ним изотопным или флуоресцентным меткам.

Для улучшения результатов ПЦР используются различные ПЦР добавки. Эти компоненты способны понижать температуру денатурации матрицы или стабилизируют ДНК-полимеразу.

Обычно используемые ПЦР-добавки включают диметилсульфоксид (ДМСО), сульфат аммония, полиэтиленгликоль, бычий сывороточный альбумин (BSA), желатин, N-триметилглицин и глицерин.

Если в пробе имеется искомая ДНК, с ней происходит ряд последовательных цикличных реакций, которые различаются температурными режимами.

Ход реакции

Амплификация может включать в себя множество циклов, но все они состоят из трёх этапов: денатурация, отжиг, элонгация [1].

Денатурация – процесс перехода двухнитевой формы ДНК в однонитевую из-за разрыва водородных связей между комплементарными парами оснований при воздействии высоких температур.

Отжиг – процесс присоединения праймеров к одноцепочечной ДНК-мишени. Отжиг происходит благодаря правилу комплементарностиЧаргаффа. Без соблюдения этих условий праймеры не отжигаются.

Элонгация (синтез). Taq-полимераза достраивает вторую цепь ДНК с 3’-концапраймера.

Температура в реакционной смеси доводится до оптимума работы Taq-полимеразы. Затем она максимально эффективно начинает синтезировать вторую цепь ДНК от 3’-конца праймера, который связан с матрицей, и продвигается в направлении от 3’ к 5’ концу.

Результатом ПЦР будет экспоненциальное увеличение количества специфического фрагмента ДНК, описываемое формулой

А = М(2n – n–1)~2n,

где А – количество специфических (ограниченных праймерами) продуктов реакции амплификации; М – начальное количество ДНК-мишеней; n – число циклов амплификации.

Таким образом, специфические фрагменты, ограниченные на концах праймерами, впервые появляются в конце второго цикла, накапливаются в геометрической прогрессии и очень скоро начинают доминировать среди продуктов амплификации.

Виды ПЦР

Помимо классического варианта ПЦР существует также множество других вариантов постановки ПЦР, которые направлены на решение многих задач: увеличение эффективности реакции и снижения риска образования неспецифических продуктов; реализацию возможности проведения качественного и количественного анализа искомых участков молекулы ДНК/РНК [2].

В клинико-диагностических лабораториях наиболее распространенными модификациями ПЦР являются:

ПЦР с «горячим» стартом (hot-start PCR) – суть этой модификации состоит в предотвращении возможности начала реакции до момента достижения условий, которые обеспечивают специфический отжиг праймеров.

В момент постановки ПЦР полимеразная активность фермента блокируется антителами или небольшими молекулами типа Affibody, имитирующими антитела, до наступления первой денатурации (при 95°C в течение 10 минут).

ПЦР с «горячим» стартом дает возможность минимизировать вероятность образования неспецифических продуктов ПЦР и возможность получения ложноположительных результатов анализа.

ПЦР с обратной транскрипцией (ОТ-ПЦР, RT-PCR) – предназначен для амплификации, выделения или идентификации последовательности РНК. Сперва проводят синтез одноцепочечной молекулы ДНК (кДНК), с помощью ревертазы (обратной транскриптазы), используя для матрицы мРНК. Затем образовавшуюся кДНК используют для последующей ПЦР.

Возможность использовать РНК в качестве мишени для ПЦР расширяет спектр применения метода, например, геномы многих вирусов (гепатит С, вирусы гриппа, ВИЧ и т.д.) представлены именно РНК.

ПЦР с анализом результатов «по конечной точке» (End-point PCR) – эта модификация позволяет учитывать результаты реакции по наличию флуоресценции после амплификации, не открывая пробирку. Таким образом, решается проблема контаминации ампликонами. Однимизвариантовявляетсяметод «FLASH» (FLuorescentAmplification-basedSpecificHybridization – специфическая гибридизации в процессе амплификации с ДНК-зондами, меченными флуорофорами).

ПЦР в режиме «реального времени» (Real-Time PCR, ПЦР-РВ) – используется одновременно для амплификации и измерения количества искомой молекулы ДНК. Преимущество состоит в возможности совмещения детекции и количественного определения специфической последовательности ДНК в образце после каждого цикла амплификации в реальном времени.

Для этого используются флуоресцентные красители, которые интеркалируют в двуцепочечные молекулы ДНК или модифицированные дезоксинуклеоты, флуоресцирующие после гибридизации с комплементарными участками ДНК.

Мультиплексная (мультипраймерная) ПЦР – амплификация двух и более последовательностей ДНК в одной пробирке одновременно. Преимущество этого метода заключается в возможности выявления ряда патогенов, генетических модификаций организмов или генотипирования множественных аллелей и т.д., поместив проб в одну пробирку.

Все перечисленные виды ПЦР не могут быть проведены без необходимого пространства и оборудования.

Организация ПЦР-лаборатории и необходимое оборудование

Организация ПЦР-лаборатории и необходимый список оборудования регламентированы Методическими указаниями (МУ 1.3.2569–09) «Организация работы лабораторий, использующих методы амплификации нуклеиновых кислот при работе с материалом, содержащим микроорганизмы I–IV групп патогенности». Комплект необходимого оборудования для проведения ПЦР должен включать в себя все необходимые приборы для выделения НК, их амплификации и детекции результатов. Все оборудование должно быть исправным, иметь технический паспорт и инструкцию по эксплуатации. Все приборы должны соответствовать нормам безопасности.

Для предотвращения контаминации исходных образцов используют одноразовые пробирки с плотно закрывающимися крышками и наконечники к микродозаторам, термостаты с твердотельнымтермоблоком, специальные контейнеры для сброса использованных наконечников и пробирок. Смена наконечников является обязательной после каждой проведенной манипуляции [3].

Для каждого отдельного помещения предусмотрено наличие холодильников и морозильников для поддержания определенной температуры, вортексов и ротаторов для перемешивания, центрифуг различной мощности для перемешивания и разделения образцов. Также необходимо наличие комплекта дозаторов различного диапазона объемов и подходящих для них наконечников, штативов для микропробирок, самих микропробирок (центрифужных, градуированных и пр.) различных объемов. Все комнаты должны быть оснащены бактерицидными рецикуляторами для дезинфекции воздуха при помощи УФ, все рабочие поверхности и наружные поверхности корпусов приборов должны быть устойчивы к дезинфекции. Помимо перечисленного списка каждая зона лаборатории должны содержать конкретный набор приборов, необходимых для выполнения соответствующих задач.

Организация зон лаборатории представлена на схеме [4].

Зона приема, регистрации и первичной обработки материала должна быть оборудована центрифугами для осаждения и разделения компонентов проб.

В зоне выделения НК необходимо наличие:

• абактериального бокса для защиты исследователя от патогенных агентов, передающихся воздушно-капельным путем;

• процессора магнитных частиц для экстракции НК;

• нанофотометра для определения количества и качества выделенной из образка ДНК/РНК;

• термостата для поддержания постоянной температуры в пробирках, помещенных в гнезда термоблока;

• дистиллятора для получения дистиллированной воды.

• Зона приготовления реакционной смеси и проведения ПЦР должна содержать:

• амплификатор, необходимый для нагрева/охлаждения пробирок;

• бокс для стерильных работ для обеспечения защиты от контаминации при выделении ДНК и подготовке реакционной смеси.

vas-1.tif

Обозначения:

1 – зона приема, разбора и первичной обработки материала;

2 – зона подготовки проб и выделения НК;

3 – зона приготовления реакционных смесей, проведения ОТ и ПЦР;

4 – зона детекции результатов методом электрофореза и ГиФА;

5 – комната анализа результатов;

6 – предбокс;

7 – комната обеззараживания материала.

vas-2.tif

Обязательными для зоны детекции результатов являются:

• камера для электрофореза – разделения продуктов амплификации нуклеиновых кислот, а также источник питания, преобразующий переменный ток в постоянный;

• система гель-документации для регистрации результатов и воспроизведения электрофореграмм, включающая в себя трансиллюминатор для детекции результатов в УФ спектре, а также компьютер;

• электронные прецизионные весы для приготовления агарозного геля, который используется при электрофорезе;

• электрическая плитка для тех же целей.

В последней, но немаловажной зоне дезинфекции материалов необходим паровой стерилизатор для обработки образцов водяным паром под давлением.

Состав оборудования может варьировать в зависимости от размера лаборатории и других факторов.

Заключение

Метод ПЦР находит применение в различных областях диагностики. Его применяют для выявления в клинических образцах вирусов, бактерий, простейших, а также для обнаружения приобретенных и врожденных генетических нарушений и идентификации личности [5].

Автоматизация этапов денатурации, отжига и элонгации с применением современного оборудования позволяет упростить проведение анализа и способствует его широкому применению в различных областях диагностики. Однако повсеместное внедрение данного метода ограничивается необходимостью ручной и трудоемкой подготовки проб идетекции результатов, а также необходимостью в оснащенной лаборатории со всеми необходимыми реактивами и оборудованием.

Сфера применения полимеразной цепной реакции в дальнейшем будет расширяться, т.к. все чаще в клинической практике имеют дело с очень небольшим количеством исследуемого материала, анализ которого возможен только этим методом.

Появление все новых видов ПЦР способствует охвату большего спектра возможностей для применения метода, упрощает и ускоряет его проведение, тем самым позволяя получить наиболее точный, верный и быстрый результат.


Библиографическая ссылка

Колотова А.А., Васильева О.Ю., Горошко П.В. ПОЛИМЕРАЗНАЯ ЦЕПНАЯ РЕАКЦИЯ КАК МЕТОД ИССЛЕДОВАНИЯ В МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКОЙ ДИАГНОСТИКЕ // Научное обозрение. Педагогические науки. – 2019. – № 5-2. – С. 46-51;
URL: https://science-pedagogy.ru/ru/article/view?id=2165 (дата обращения: 26.10.2021).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1.074